
Homework III
Due Date: 20/04/2023

Exercise 1. Consider the following three Cauchy problems.
(i) (1 point) Solve{

∂2
t u− ∂2

xu = tx, for (t, x) ∈ [0,∞)× R,
(u, ∂tu)|t=0 = (0, 0), for x ∈ R.

(ii) (1 point) Solve{
∂2
t u− ∂2

xu = eax, for (t, x) ∈ [0,∞)× R,
(u, ∂tu)|t=0 = (0, 0), for x ∈ R.

(iii) (1 point) Solve{
∂2
t u− ∂2

xu = cosx, for (t, x) ∈ [0,∞)× R,
(u, ∂tu)|t=0 = (sinx, 1 + x), for x ∈ R.

Exercise 2. We consider a C2 solution u of the 1D wave equation
∂2
t u− ∂2

xu = 0,

in the cylinder C =
{
(t, x) ∈ R2 : (t, x) ∈ [0,∞)× [a, b]

}
with −∞ < a < b < +∞.

Assume that u satisfies the boundary condition
u(t, a) = 0 and (∂tu+ ∂xu)(t, b) = 0, for all t ≥ 0.

(i) (1 point) Define the energy of u at time t by

E(t) =
1

2

∫ b

a

[
(∂tu)

2 + (∂xu)
2
]
(t, x)dx.

Show that

E(T )− E(0) = −
∫ T

0

(∂tu)
2(t, b)dt.

The energy is said to dissipate along the boundary {x = b}.
(ii) (1 point) Show that for t ≥ 2(b−a), we have u(t, x) = 0 for any x ∈ [a, b]. That
is, so much energy dissipated that there is nothing left.
Hint: Find the characteristic curve of function ∂tu+ ∂xu.

Exercise 3. The goal of this question is to show that, in R3, we have∫
R3

|u(x)|2

|x|2
dx ≤ 4

∫
R3

|∇u(x)|2dx, for all u ∈ C∞
c (R3). (1)

We mention here that inequality (1) is the so-called Hardy inequality.
(i) (1 point) Let ω ∈ ∂B1(0). Show that∫ ∞

0

|u(rω)|2dr = −2

∫ ∞

0

u(rω) [(ω · ∇xu)(rω)] rdr.

Hint: Integration by parts in (0,∞).
(ii) (1 point) Using the Cauchy-Schwarz inequality and the polar coordinates (r, ω) ∈
(0,∞)× ∂B1(0) in R3 (dx = r2drdSω) deduce the inequality (1).

Exercise 4. Let (f, g) ∈ C∞
c (R3) × C∞

c (R3) and R+ = (0,∞). Recall that, the
unique solution of the following Cauchy problem{

∂2
t u−∆u = 0, for (t, x) ∈ R+ × R3,

(u, ∂tu)|t=0 = (f, g), for x ∈ R3,
1



2

can be written as

u(t, x) =
1

4πt2

∫
∂Bt(x)

(f(y) +∇f(y) · (y − x) + tg(y)) dSy

(i) (1 point) Show that the solution u can be rewritten as u = u1 + u2 + u3 where

u1(t, x) =
1

4π

∫
∂B1(0)

f(x+ tω)dSω,

u2(t, x) =
t

4π

∫
∂B1(0)

g(x+ tω)dSω,

u3(t, x) =
t

4π

∫
∂B1(0)

∇f(x+ tω) · ωdSω.

Hint: Using the change of variable y = x+ tω.
(ii) (1 point) Using the Cauchy–Schwarz inequality and the polar coordinates in R3

prove that there exists (C1, C2, C3) ∈ (0,∞)3 (independent of f and g) such that∫ ∞

0

|u1(t, x)|2dt ≤ C1

∫
R3

|f(x+ y)|2

|y|2
dy for all x ∈ R3,∫ ∞

0

|u2(t, x)|2dt ≤ C2

∫
R3

|g(x+ y)|2dy for all x ∈ R3,∫ ∞

0

|u3(t, x)|2dt ≤ C3

∫
R3

|∇f(x+ y)|2dy for all x ∈ R3.

Hint: Using the polar coordinates y = tω and dy = t2dtdSω.
(iii) (1 point) Deduce that there exists C > 0 (independent of f and g) such that

sup
x∈R3

∫ ∞

0

|u(t, x)|2dt ≤ C

∫
R3

(
|∇f(y)|2 + |g(y)|2

)
dy.

The above inequality is a type of Morawetz inequality.
Hint: Using the Hardy inequality.


