Homework III

Due Date: 20/04/2023
Exercise 1. Consider the following three Cauchy problems.
(i) (1 point) Solve

$$
\left\{\begin{aligned}
& \partial_{t}^{2} u-\partial_{x}^{2} u=t x, \\
& \text { for }(t, x) \in[0, \infty) \times \mathbb{R}, \\
&\left(u, \partial_{t} u\right)_{\mid t=0}=(0,0), \\
& \text { for } x \in \mathbb{R}
\end{aligned}\right.
$$

(ii) (1 point) Solve

$$
\left\{\begin{aligned}
\partial_{t}^{2} u-\partial_{x}^{2} u & =e^{a x}, & & \text { for }(t, x) \in[0, \infty) \times \mathbb{R}, \\
\left(u, \partial_{t} u\right)_{\mid t=0} & =(0,0), & & \text { for } x \in \mathbb{R} .
\end{aligned}\right.
$$

(iii) (1 point) Solve

$$
\left\{\begin{array}{rlrl}
\partial_{t}^{2} u-\partial_{x}^{2} u & =\cos x, & & \text { for }(t, x) \in[0, \infty) \times \mathbb{R} \\
\left(u, \partial_{t} u\right)_{\mid t=0}=(\sin x, 1+x), & & \text { for } x \in \mathbb{R}
\end{array}\right.
$$

Exercise 2. We consider a C^{2} solution u of the 1 D wave equation

$$
\partial_{t}^{2} u-\partial_{x}^{2} u=0,
$$

in the cylinder $\mathcal{C}=\left\{(t, x) \in \mathbb{R}^{2}:(t, x) \in[0, \infty) \times[a, b]\right\}$ with $-\infty<a<b<+\infty$.
Assume that u satisfies the boundary condition

$$
u(t, a)=0 \quad \text { and } \quad\left(\partial_{t} u+\partial_{x} u\right)(t, b)=0, \quad \text { for all } t \geq 0
$$

(i) (1 point) Define the energy of u at time t by

$$
E(t)=\frac{1}{2} \int_{a}^{b}\left[\left(\partial_{t} u\right)^{2}+\left(\partial_{x} u\right)^{2}\right](t, x) \mathrm{d} x .
$$

Show that

$$
E(T)-E(0)=-\int_{0}^{T}\left(\partial_{t} u\right)^{2}(t, b) \mathrm{d} t .
$$

The energy is said to dissipate along the boundary $\{x=b\}$.
(ii) (1 point) Show that for $t \geq 2(b-a)$, we have $u(t, x)=0$ for any $x \in[a, b]$. That is, so much energy dissipated that there is nothing left.
Hint: Find the characteristic curve of function $\partial_{t} u+\partial_{x} u$.
Exercise 3. The goal of this question is to show that, in \mathbb{R}^{3}, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|^{2}} \mathrm{~d} x \leq 4 \int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} \mathrm{~d} x, \quad \text { for all } u \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right) . \tag{1}
\end{equation*}
$$

We mention here that inequality (1) is the so-called Hardy inequality.
(i) (1 point) Let $\omega \in \partial B_{1}(0)$. Show that

$$
\int_{0}^{\infty}|u(r \omega)|^{2} \mathrm{~d} r=-2 \int_{0}^{\infty} u(r \omega)\left[\left(\omega \cdot \nabla_{x} u\right)(r \omega)\right] r \mathrm{~d} r .
$$

Hint: Integration by parts in $(0, \infty)$.
(ii) (1 point) Using the Cauchy-Schwarz inequality and the polar coordinates $(r, \omega) \in$ $(0, \infty) \times \partial B_{1}(0)$ in $\mathbb{R}^{3}\left(\mathrm{~d} x=r^{2} \mathrm{~d} r \mathrm{~d} S_{\omega}\right)$ deduce the inequality (1).

Exercise 4. Let $(f, g) \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right) \times C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ and $\mathbb{R}^{+}=(0, \infty)$. Recall that, the unique solution of the following Cauchy problem

$$
\begin{cases}\partial_{t}^{2} u-\Delta u=0, & \text { for }(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{3}, \\ \left(u, \partial_{t} u\right)_{\mid t=0}=(f, g), & \text { for } x \in \mathbb{R}^{3},\end{cases}
$$

can be written as

$$
u(t, x)=\frac{1}{4 \pi t^{2}} \int_{\partial B_{t}(x)}(f(y)+\nabla f(y) \cdot(y-x)+t g(y)) \mathrm{d} S_{y}
$$

(i) (1 point) Show that the solution u can be rewritten as $u=u_{1}+u_{2}+u_{3}$ where

$$
\begin{aligned}
& u_{1}(t, x)=\frac{1}{4 \pi} \int_{\partial B_{1}(0)} f(x+t \omega) \mathrm{d} S_{\omega}, \\
& u_{2}(t, x)=\frac{t}{4 \pi} \int_{\partial B_{1}(0)} g(x+t \omega) \mathrm{d} S_{\omega}, \\
& u_{3}(t, x)=\frac{t}{4 \pi} \int_{\partial B_{1}(0)} \nabla f(x+t \omega) \cdot \omega \mathrm{d} S_{\omega} .
\end{aligned}
$$

Hint: Using the change of variable $y=x+t \omega$.
(ii) (1 point) Using the Cauchy-Schwarz inequality and the polar coordinates in \mathbb{R}^{3} prove that there exists $\left(C_{1}, C_{2}, C_{3}\right) \in(0, \infty)^{3}$ (independent of f and g) such that

$$
\begin{array}{ll}
\int_{0}^{\infty}\left|u_{1}(t, x)\right|^{2} \mathrm{~d} t \leq C_{1} \int_{\mathbb{R}^{3}} \frac{|f(x+y)|^{2}}{|y|^{2}} \mathrm{~d} y & \text { for all } x \in \mathbb{R}^{3}, \\
\int_{0}^{\infty}\left|u_{2}(t, x)\right|^{2} \mathrm{~d} t \leq C_{2} \int_{\mathbb{R}^{3}}|g(x+y)|^{2} \mathrm{~d} y & \text { for all } x \in \mathbb{R}^{3}, \\
\int_{0}^{\infty}\left|u_{3}(t, x)\right|^{2} \mathrm{~d} t \leq C_{3} \int_{\mathbb{R}^{3}}|\nabla f(x+y)|^{2} \mathrm{~d} y & \text { for all } x \in \mathbb{R}^{3} .
\end{array}
$$

Hint: Using the polar coordinates $y=t \omega$ and $\mathrm{d} y=t^{2} \mathrm{~d} t \mathrm{~d} S_{\omega}$.
(iii) (1 point) Deduce that there exists $C>0$ (independent of f and g) such that

$$
\sup _{x \in \mathbb{R}^{3}} \int_{0}^{\infty}|u(t, x)|^{2} \mathrm{~d} t \leq C \int_{\mathbb{R}^{3}}\left(|\nabla f(y)|^{2}+|g(y)|^{2}\right) \mathrm{d} y .
$$

The above inequality is a type of Morawetz inequality.
Hint: Using the Hardy inequality.

